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ABSTRACT  
 
GNSS collaborative positioning receives great attention because of the rapid development of vehicle-to-vehicle (V2V) 
communication. Its current bottleneck is in urban areas. During the calculation of double difference of GNSS measurements 
between two receivers to obtain their relative positions, the notorious multipath effects and NLOS reception in the pseudorange 
measurement cannot be eliminated. Even worse, these effects become more severe due to the multipath effects of two receivers 
are aggregated. Recently, the studies explored the use of 3D city models to aid GNSS positioning are increasing. It is widely 
believed the3D map aided (3DMA) GNSS is a solution to mitigate or even correct the multipath and NLOS effects. This paper 
therefore investigates the potential to aid GNSS collaborative positioning using 3D city models. The 3D models are used in two 
phases. The first phase is in single receiver level. The models is used to exclude NLOS measurements based on GNSS shadow 
matching (SDM) positioning result. The second phase is in multi-receiver level. The 3D building model is used together with 
broadcast ephemeris data to generate the predicted GNSS positioning error map. Based on the error map, each receiver will be 
labelled as, good, medium and bad, conditions. The receiver labelled as bad condition will be improved by the receiver labelled 
as good condition. Five low-cost GNSS receivers are used to conduct a static experiment. According to the result, the positioning 
accuracy of the receiver located at deep urban canyon will be improved from 26.6 to 17.9 meters, where its SDM result is 19.3 
meters.  
 

1. INTRODUCTION  
 
Intelligent transportation system (ITS) receives greater attention, aiming to improve transportation safety and efficient. However, 
one of the bottlenecks of ITS is the vehicle localization accuracy. The localization accuracy of vehicles is essential for navigation 
and traffic management, the localization error may cause incorrect driving route, or even traffic accidents. The common 
approaches for vehicular localization are based on the global navigation satellite system (GNSS), the inertial navigation system 
(INS), the light detection and ranging system (LiDAR) and vision sensors. In between, the GNSS is the only system providing 
the absolute positioning solution, making GNSS indispensable for ITS. With the significant development of communication 
technology, the vehicle-to-vehicle (V2V) communication becomes possible in the near future. The V2V collaborative positioning 
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has becoming one of the popular researches. By making use of the numerous surrounding vehicular measurements, the 
positioning accuracy of the target vehicle can be optimized and highly improved. The V2V collaborative positioning can be 
categorized into two categories, the transponder-based and the GNSS-based positioning [1]. The transponder-based approach 
employs the radio frequency to measure the relative position between target vehicle and surrounding vehicles, such as time of 
arrival (TOA), time difference of arrival (TDOA) and angle of arrival (AOA). However, these methods still suffer from the non-
light-of-sight (NLOS) reception. The transporting signal between vehicles may be blocked by obstacles, buildings or in-between 
vehicle, resulting the loss of measurement between vehicles. On the other hand, the GNSS-based method conducts collaborative 
positioning by exchanging the GNSS raw measurements between vehicles. The shared measurements are further applied with 
the double difference (DD) technique, which is widely used in real-time kinematic (RTK) to obtain the relative position. The 
DD technique is able to eliminate the systematic errors, including ionospheric, tropospheric and satellite clock/orbits bias [2]. 
Therefore, the GNSS-based collaborative positioning method can achieve better accuracy, even though the vehicles are under 
the NLOS situation. However, this GNSS based collaborative positioning is still highly affected by the GNSS multipath effects 
and NLOS reception, meaning its performance in urban areas can be significantly degraded [3]. 
 
In the urban area, the signal transmission from satellites to receiver may be blocked or reflected by the buildings. The receiver 
may receive both direct and reflected signal as multipath effect, or even worse, only the reflected signal, the NLOS. The reflected 
signal introduces an extra traveling distance, resulting in enormous GNSS positioning error [4]. By conducting differential 
technique, the multipath and NLOS error can even be doubled. Hence, the multipath and NLOS effects should be greatly 
mitigated before applying the GNSS raw measurement in collaborative positioning. Due to the nature that multipath and NLOS 
effects are produced because of buildings, the 3D building model can be employed to evaluate and mitigate such effects. Since 
the 3D building model of cities have been well constructed and easy to access, different methods are developed recently to aid 
the GNSS urban positioning [5]. The shadow matching is a widely used 3D map aided GNSS positioning method [6]. It matches 
the satellite visibility of receiver with the predicted satellite visibility in different locations to determine the position of the 
receiver.  While in some deep urban situation, the severe NLOS signal reception may cause incorrect matching to degrade the 
performance of shadow matching [7].  
 
This paper aims to combine the advantage of shadow matching in GNSS based collaborative positioning. First, due to the error 
distribution of GNSS shadow matching, its positioning solution is still able to combine with the 3D building model and ephemeris 
to classify and exclude the NLOS satellites. The survived raw GNSS measurements of each vehicle can be further applied with 
consistency check based fault detection and exclusion (FDE) [8]. After the 3D building model based and consistency check based 
FDE, the survived measurements can be considered as clean measurements to conduct DD technique, obtaining accurate relative 
positioning solutions between the vehicles. During the collaborative positioning, the estimated relative positions and absolute 
positions are cooperated to optimize the final position of the target vehicles. Among numerous measurements, the inaccurate 
measurements may lead to large error in the optimization. Therefore, it is important to classify whether the measurement is 
reliable or untrustworthy. Due to the multipath and NLOS effects, it is hard to evaluate the positioning performance by 
measurements or other factors, such as dilution of precision (DOP) and carrier to noise ratio (C/N0) [9]. The newly proposed 
GNSS ray-tracing algorithm is able to use the broadcast ephemeris and 3D building model to predict the positioning error for a 
specific location, especially in urban areas [10]. Based on the predicted GNSS positioning error, the reliability of each 
measurement is able to be classified. The reliable measurements can be picked out and further applying the collaborative 
positioning, obtaining the accurate positioning solution for the target vehicle. Finally, an average collaboration positioning is 
implemented to calculate the final positioning result.  
 

2. THE 3D MAP AIDED GNSS COLLABORATIVE POSITIONING ALGORITHM 
 
The collaborative positioning algorithm is commonly based on the optimization of the absolute position of single vehicle and 
the relative positions between vehicles. The advantage of collaborative positioning is to make use of the measurements from 
surrounding vehicles, obtaining a better positioning result. For the vehicle in deep urban, the GNSS positioning error is about 50 
meters or worse due to the multipath and NLOS effects. By employing the collaborative positioning algorithm, the surrounding 
vehicle under a good positioning environment can share its measurement to the vehicle in deep urban. The shared healthy 
measurements can contributes the positioning performance of vehicle in deep urban canyon, resulting a more accurate positioning 
solution even with severe multipath and NLOS effect.  
 
In this study, the flowchart of the proposed V2V collaborative positioning algorithm is shown as Fig.1. For each vehicle, the 
received GNSS raw measurement will be applied with the GNSS shadow matching (SDM) positioning based on the 3D building 
models. By using the SDM, an accurate initial positioning solution for each vehicle can be obtained. The detail algorithm can be 
found in [11]. Based on the initial positioning solution, the satellite visibility can be calculated from the skymask (skyplot with 
building information) and further identify which satellite signal could be blocked by buildings, namely NLOS signals. Then, the 
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reminding GNSS measurements (after excluding those NLOS measurement) will be conducted with consistency check based 
FDE [12]. After the two exclusions, the survived measurements are considered as clean GNSS measurements. The survived 
measurements of each vehicle will be cooperated and applied with double difference to obtain the relative positions in between 
vehicles. Meanwhile, the consistency check will be employed again during the DD calculation, ensuring the consistency of 
measurements [8]. 
 

 
 

Fig.1 The flowchart of the proposed 3D map aided V2V collaborative positioning algorithm. 
 
Based on the 3D building model in the operating area and the broadcast ephemeris, the GNSS range measurement that consisted 
of multipath and NLOS delay can be predicted using ray-tracing algorithm [13]. After processing the simulated measurement, 
the positioning error of each location can be obtained comparing the true location. The positioning error of each location can be 
constructed into a positioning error map, indicating the predicted positioning error for each location as Fig.2 [10].  
 

 
Fig.2 The predicted positioning error map. The color bar denotes the positioning error (m). 

 

3D building 
models

GNSS Raw 
Data

Shadow Matching (SDM)

NLOS Identification based on 
SkyMask and Consistency Check  

3D building 
models

GNSS Raw 
Data

Shadow Matching (SDM)

NLOS Identification based on 
SkyMask and Consistency Check  

Double Difference and perform 
its Consistency Check  

𝑆𝑉𝑆𝑢𝑟𝑣𝑖𝑣𝑒𝑑
(1)

𝑆𝑉𝑆𝑢𝑟𝑣𝑖𝑣𝑒𝑑
(2)

Absolute Position of 
Rover 1

Absolute Position of 
Rover 2

Relative Position 
between Rovers 1& 2

Rover 1

Rover 2

Rover N

…
 

Predicted GNSS 
Positioning Error Map

3D building 
models

Broadcast 
Ephemeris

Collaborative Positioning 

Final Positioning Result 

145



Using the positioning error map, we are able to predict each vehicle’s positioning error based on the SDM estimated absolute 
position, and then categorize into different class. The positioning performance status of the vehicle is determined by the predicted 
positioning error with the Table.1.  
 

Table.1 Classification based on the predicted GNSS positioning error 
Predicted Positioning Error (m) Classification Result 

< 5 Good 

5 - 15 Medium 

> 15 Bad 
 
For the bad positioning performance vehicle, the positioning solution of LS or SDM may still includes large error, due to the 
large multipath/NLOS delay and the high NLOS/LOS ratio. Since the good vehicle receivers enough healthy measurements, 
both the absolute and relative positioning solutions achieve better accuracy comparing with that of bad vehicles. Therefore, it is 
suggested to use the measurements and positioning solutions of good vehicles to determine the position of bad vehicles. Based 
on the SDM of good vehicles (absolute position) and the DD with double layer consistency check FDE between good and bad 
vehicle (relative positions), the final estimated position of the bad vehicle can be derived as following: 
 
                                                                              , ,bad SDM good DD good bad−= + ∆r r r                                                                            (1) 
 
where r denotes the position of vehicle, the subscript SDM denotes the positioning solution from SDM. badgoodDD −∆ ,r  denotes 
the relative positioning vector between good vehicle and bad vehicle obtained using the double difference technique with double 
layer consistency check. By using the good vehicle as reference to determine the bad vehicle’s positioning, the positioning 
accuracy of bad vehicle can be improved. 
 

3. EXPERIMENT SETUP AND RESULT 

Experiment setup 
 
To verify the proposed 3DMA GNSS based collaborative positioning algorithm, an experiment is design as Fig.3 (a). Five 
different location is selected representing 5 different vehicles under different environment: Vehicle 1) 22.298332°N, 
114.179559°E with open sky; Vehicle 2) 22.297950°N, 114.179175°E with open sky; Vehicle 3) 22.298299°N, 114.178953°E 
with one-side building; Vehicle 4) 22.298739°N, 114.179484°E with one-side building; Vehicle 5) 22.298650°N, 114.178760°E 
in dense urban. For each vehicle’s location, the u-blox M8T receiver as Fig.3 (b) is used to collect the raw GNSS measurements 
with GPS and GLONASS constellation. All receivers are simultaneously collecting 10 minutes data statically. The recorded 
measurements are further applied with the proposed algorithm by post-processing. 
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Fig.3 (a) The vehicle locations for the proposed 3DMA collaborative positioning experiment; (b) The u-blox M8T 
receiver used during the experiment. 

 

Classification of the positioning performance of single vehicle 
 
Using the broadcast ephemeris data and the 3D building models, the predicted GNSS positioning error map is generated. Based 
on the SDM, the predicted positioning error of a receiver can be obtained from the generated GNSS positioning error map. The 
distribution of the predicted positioning error from the generated positioning error map and the least square are shown in Fig.4, 
The corresponding mean errors and classification results are shown in Table 2. 
 

 
Fig.4 The predicted positioning error from the generated positioning error map and least square estimation. 

 
Table.2 The mean positioning error (m) and class from predicted positioning error map and LS for each vehicle 

Vehicle 1 2 3 4 5 

LS (m) 4.3 3.3 17.4 9.0 26.6 

PEM (m) 2.6 9.1 13.2 12.2 25.8 

Class Good Normal Normal Normal Bad 
 
Comparing the positioning error between the error map (black line in Fig.4) and LS (read line in Fig.4), although the deviation 
of the true positioning error is larger than value given in the error map, the predicted error of each vehicle is similar to the real 
positioning error that estimated by LS. Therefore, the result verifies that the positioning error map is able to predict the 
positioning error of each vehicle. For vehicle 1, the predicted error is less than 5 meters, which will be classified as good 
performance vehicle for collaborative positioning. For vehicle 2, 3 and 4, the predicted positioning error is between 5 and 15 
meters as normal vehicle, will not have contribution during collaborative positioning. For the vehicle 5, the positioning error is 
predicted as 25.8 meters, the vehicle may have severe positioning error, requiring other good vehicle to aid during collaborative 
positioning. 
 

Collaborative positioning 
 
The performance of the proposed collaborative positioning algorithm will be compared with the following four approaches: 

1) LS: Least square positioning algorithm, regarding as a conventional positioning result. 
2) SDM: Shadow matching technique, regarding as an innovative 3D map aided positioning for a single user. [14] 
3) CP-DD2CC: Collaborative positioning based on double layers consistency check [8]. 
4) CP-3DMA: The proposed 3D map aided GNSS collaborative positioning algorithm. 

 
The positioning solutions of LS, SDM, CP-DD2CC and CP-3DMA with regard to the true receiver location (Ground Truth) are 
shown as Fig.5. The positioning error distributions of different the approaches are shown as Fig.6. The mean and standard 
deviation of the positioning error of LS, SDM, CP-DD2CC and CP-3DMA are shown in Table.3. 
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Fig.5 The positioning solution of least square (LS), shadow matching (SDM), collaborative positioning with double 

layers of consistency check (CP-DD2CC) and the proposed 3D map aided GNSS collaborative positioning (CP-3DMA) 
with regarding to the true receiver location (Ground Truth). 

 

 
Fig.6 The positioning error of LS, SDM, CP-DD2CC and CP-3DMA. 

 
Table.3 The mean positioning error and standard deviation of LS, SDM, CP-DD2CC and CP-3DMA 

Method LS SDM CP-DD2CC CP-3DMA 

Mean (m) 26.6 19.3 36.3 17.9 

STD (m) 12.4 15.7 41.2 12.1 
 
The estimated positions of the conventional LS are largely drifted from the true location because of the multipath effort and 
NLOS reception, resulting 26.6m as mean error. Since the multipath effects and NLOS receptions are severe, the consistency 
check algorithm may occur fake consistent issue. The healthy measurements may be wrongly excluded, making the positioning 
accuracy degraded to 36.3 meters. GNSS shadow matching is able to avoid using the multipath/NLOS delayed pseudorange 
measurements, improving the accuracy to 19.3m in mean and 15.7m in STD. However, the large NLOS/LOS ratio makes the 
receiver’s satellite visibility incorrect. As a result, the positioning error is still large. The proposed 3D map aided GNSS 
collaborative positioning method is able to firstly exclude the obvious NLOS measurements by shadow matching based satellite 
visibility. Then, the healthy vehicles are selected with the predicted GNSS positioning error map and collaborated with bad 
vehicle’s measurement using double difference. The double layer consistency check can further exclude the inconsistent 
measurements. Finally, the proposed CP-3DMA method achieves 17.9 meters positioning error with 12.1 meters STD for the 
bad vehicle, improving its positioning performance in dense urban areas. 
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4. CONCLUSIONS 
 
In this study, a 3D map aided GNSS collaborative positioning algorithm is developed to improve the positioning accuracy in 
dense urban areas. The GNSS shadow matching can obtain an accurate initial absolute position of all the participating vehicles. 
This absolute position is further used with 3D building model to exclude the obvious NLOS measurements. During deriving the 
estimation of relative positions between two vehicles via double difference, a double layers of consistency check method is used 
to exclude inconsistent GNSS range measurements. After the exclusions, the multipath and NLOS error can be mitigated. Based 
on the classification from the predicted GNSS positioning error map, the measurements of the vehicles with good performance 
are cooperated with the measurements from vehicles with bad performance, aiding the bad vehicles achieving a more accurate 
positioning solution in a dense urban area. The experiment results verify the proposed 3DMA GNSS collaborative positioning 
algorithm obtains a more accurate positioning performance comparing to the conventional LS method. 
 
However, the predicted positioning error may have large difference with the real positioning error in some epochs, since the 
random noise may not be the same as the real operation. Moreover, the collaborative positioning solution is typically distributed 
along one direction. Due to the geometry of the distribution visible satellites with regarding to the receiver, the positioning 
solution may deviate a lot on from one direction. The future work is to improve the accuracy of the predicted positioning error 
map to ensure the correctness of vehicle status classification. Also, the positioning error distribution due to the DOP distortion 
of the proposed 3DMA GNSS collaborative positioning method is worth to be investigated. 
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